Установлено, что растениям свойственны те же витамины, что и животным. Почти все витамины, необходимые для жизни нашего организма, мы получаем из растений (или микроорганизмов) готовыми — животные и человек не могут их синтезировать.
Здесь следует несколько отвлечься и сказать о том, какие именно вещества мы относим к группе витаминов. Дело в том, что первоначальное представление о витаминах как особой группе химических веществ оказалось неверным. Когда были выделены и изучены различные витамины (а их сейчас известно около 40), оказалось, что это — органические вещества разной химической природы. Общим их свойством является только физиологическая активность, т. е. способность оказывать свое действие при введении с пищей в очень малых количествах. «Очень малое количество» — критерий, естественно, далеко не точный, поэтому о некоторых веществах ученые спорят: относить их к витаминам или нет.
В тот период, когда химическое строение многих витаминов еще не было расшифровано, их стали обозначать буквами латинского алфавита: А, В, С, D и т. д. Потом выяснилось, что многие из них — давно известные химикам вещества: например, витамином PP оказалась синтезированная еще 70 лет назад никотиновая кислота. Но буквенные обозначения за витаминами сохранились.
Позже стало выясняться, что то, что называли, например, витамином В, не одно вещество, а смесь различных соединений, разного состава и по-разному действующих на организм. Их стали обозначать как B1, B2, B6 и т. д. Затем и эти «рамки» оказались витаминам тесны. Вновь открываемые витамины получали названия уже по своему химическому составу. Так, в семью витаминов вошли пантотеновая и фолиевая кислоты, «факторы роста» — инозит и биотин, параминобензойная кислота и другие вещества. Они не получили уже буквенных обозначений. Весьма возможно, что вся эта разношерстная группа найдет в будущем более ясное «химическое лицо». Сейчас же в понятие «витамины» мы объединяем различные органические вещества, которые нужны для жизни в очень малых количествах и отсутствие которых в пище вызывает различные заболевания.
Почти все витамины образуются в растениях. Лишь витамины А и D синтезируются в теле человека, но для их образования нужны так называемые провитамины, т. е. предшественники витаминов — тоже органические вещества. Провитамином А является желтый пигмент растений (например, моркови) — каротин, который в тканях животного при определенных условиях превращается в витамин А. Провитамин D — эргостерин — содержится в желтках яиц, дрожжах и т. д.
Растения, в отличие от животных, способны синтезировать витамины из простых соединений. Например, в образовании каротина непосредственное участие принимает уксусная кислота. Материалом для образования витамина C в растениях являются сахара, содержащие в молекуле шесть углеродных атомов (гексозы). Инозит также синтезируется из сахаров, но совершенно иным путем, чем аскорбиновая кислота. В биосинтезе витаминов принимают непосредственное участие широко распространенные в организме аминокислоты: триптофан нужен для образования витамина РР, бета-аланин — для пантотеновой кислоты. Но этот синтез идет только в растении.
Мы не будем в деталях рассматривать, как происходит синтез витаминов в растении. Это потребовало бы от читателей солидных знаний в области биохимии. Подчеркнем только, что процессы биосинтеза витаминов весьма сложны и исходными продуктами для них служат другие важные для жизни растения вещества. Отсюда следует, что условия жизни растения, влияя на его обмен веществ в целом, не могут не влиять и на образование и накопление витаминов. Значит, изменением условий можно воздействовать на накопление витаминов.
Как и все процессы обмена веществ, образование витаминов по-разному идет в разные периоды жизнедеятельности растений; молодые и старые растения содержат разное количество витаминов. Не одинаковыми синтетическими возможностями обладают и разные части одного и того же растения. Ниже мы постараемся изложить то, что известно сейчас об условиях синтеза в растениях витаминов.
Жизнь растения начинается с прорастания его семени. Но зародыш будущего растения начинает свое существование гораздо раньше — тогда, когда формируется само семя. В развивающееся семя из материнского растения энергично поступают как органические, так и неорганические вещества. Соответственно этому здесь активно работают ферменты, способствуя разнообразным превращениям.
Уже на самых первых этапах образования семени в нем появляются витамины. Частично они здесь же и образуются, в большей же степени передвигаются сюда из других частей растения.
Так, например, в семенах пшеницы, которые, как известно, богаты витамином B1 этот витамин синтезируется только на ранних этапах формирования зародыша. Позже он начинает поступать сюда из вегетирующих частей растений. Удается обнаружить, как по мере увеличения зерен пшеницы содержание витамина B1 в колосковых чешуях, стебле и листьях падает и соответственно возрастает в семенах.
К моменту созревания семян содержание большинства витаминов в них уменьшается. Это относится к витаминам B2, C, PP. Нередко в зрелых семенах витамин C совсем исчезает. Это, как мы увидим дальше, связано с его особой ролью в растениях. Зато содержание витамина E нередко увеличивается.
В целом, в семенах больше всего витаминов РР, пантотеновой кислоты, витамина E и витамина B2 меньше всего биотина. Зерна злаков содержат много витамина B1. Кукуруза выгодно отличается от других зерновых культур высоким содержанием провитамина A, витаминов B2, B6 и Е. По содержанию же витамина PP она уступает другим культурам.
Много исследований посвящено распределению витаминов в разных частях семени. Это важно знать для правильной технологической переработки семян, идущих в пищу. Ведь еще в прошлом веке стало известно, что болезнь «бери-бери» возникает при питании полированным (очищенным) рисом. Неочищенные зерна риса содержат достаточно витамина B1 и при употреблении их в пищу «болезнь не возникнет. Значит, витамин содержится в наружных частях зерновок. Такого рода данные помогают уяснить и роль витаминов в процессах прорастания семян.
Особенно много витаминов концентрируется в зародыше — в этой наиболее жизнедеятельной части семени. Так, если в зерне пшеницы содержится 38,7 мг/кг витамина E, то в зародышах его 355,0 мг/кг; в зерне кукурузы в целом 22,0 мг/кг этого витамина, а в зародышах 302,0 мг/кг. Витамин P вообще накапливается лишь в зародышах.
При прорастании семян вновь начинается биосинтез и энергичное перераспределение витаминов: они устремляются к растущим частям. В опытах с пшеницей, прорастающей в темноте, можно было наблюдать, что общее содержание витамина B1 в семени осталось одним и тем же, а количество этого витамина в зародыше за 18 дней увеличилось в 6,7 раза; в эндосперме же за это время оно уменьшилось в 3 раза.
Если в покоящихся семенах витамин C (аскорбиновая кислота) отсутствует, то как только начинается прорастание, он накапливается здесь в больших количествах. В прорастающих семенах интенсивно накапливаются и другие витамины: B2, B6, PP. Период прорастания семян связан с быстрой перестройкой белков, углеводов, жиров и других запасных соединений, превращением их в вещества вновь созданного тела растения. Очевидно, витамины необходимы для этой перестройки.
Если по какой-либо причине в семени не хватает того или иного витамина, течение реакции, в которой он принимает участие, нарушается, извращаются и другие превращения веществ, и это в конце концов приводит к задержке, а иногда и к полному прекращению роста.
Синтез витаминов, конечно, продолжается и во взрослом растении. При этом не всегда просто установить, в каких именно частях растения этот синтез происходит.
Известно, например, что витамин C образуется главным образом в листьях. Отсюда аскорбиновая кислота попадает в корни, где она необходима для дыхания. Но экспериментально удается показать, что корни и клубни тоже могут синтезировать аскорбиновую кислоту. Иногда в клубнях при их хранении содержание витамина C не только не падает, но даже увеличивается. Если же новые клубни картофеля выращивать из старых, не дав возможности развиться надземным частям, то содержание витамина C возрастает как в молодых, так и в старых клубнях.
Еще более интересны опыты с культурой изолированных корней. Такие корни, лишенные надземных органов, длительное время выращивают в стерильных условиях, в полной темноте на синтетической питательной среде, не содержащей витаминов. Нам удалось показать, что эти корни синтезируют значительные количества аскорбиновой кислоты.
Другие витамины тоже синтезируются в клубнях и корнях, но много их поступает и из надземных частей. В целом корне- и клубнеплоды содержат больше всего витамина C, меньше — пантотеновой кислоты и витаминов E и PP и меньше всего биотина и каротина (последний накапливается лишь в корнях моркови). При прорастании клубней и корнеплодов, так же как и при прорастании семян, происходит биосинтез многих витаминов.
В листьях и других зеленых частях растений образуются почти все витамины, и набор их здесь наиболее богат. Здесь почти всегда в довольно больших количествах есть витамины C, PP, E, каротин, в меньших количествах другие. Витамин P в значительных количествах найден в листьях чая, спаржи, гречихи, табака и многих других растений. (Препараты витамина P получают из чая, зеленой массы гречихи, плодов конского каштана и др.).
Как известно, животные не образуют витамин E. Этой способностью обладают только зеленые растения. В растительных клетках витамин E находится преимущественно в зеленых хлорофилловых зернах — хлоропластах, где концентрация его достигает 0,08% от веса сухого вещества. Из овощей наиболее богаты витамином E салат, листовая капуста и зеленый лук. Много этого витамина найдено в листьях аморфы, крапивы, клена, каштана. Однако больше всего витамина E в зародышах семян пшеницы и кукурузы. Много этого витамина и в растительных маслах, особенно в хлопковом и соевом.
Содержание витаминов в зеленых частях растений по мере их роста увеличивается, а в период цветения и плодообразования резко падает. Это связано с усиленным расходованием витаминов и со старением листьев. Но если в это время меньше витаминов становится в листьях, то они быстро накапливаются в бутонах, цветках и завязях, а позже в плодах.
В плодах в наибольших количествах встречается провитамин A — каротин. Ведь это тот пигмент, который придает плодам желтую, оранжевую, красную окраску. Например, содержание провитамина А в красном перце более чем в 30 раз превышает количество его в зеленом перце. Тем не менее и в зеленых плодах, так же как и в других зеленых частях растения, он есть. При созревании количество его сильно повышается. Это хорошо обнаруживается, например, в созревающих плодах помидоров, шиповника, апельсина, тыквы и т. д.
Количество витамина C при созревании плодов, наоборот, обычно падает. Так, в плодах облепихи 20 июля содержалось 26,5 мг/кг (на сырой вес) витамина C и 0,3 мг/кг каротина; через месяц было соответственно 19,7 и 0,7 мг/кг и 28 сентября 16,2 и 1,6 мг/кг. В плодах в заметных количествах накапливаются также витамин P и другие.
Благодаря селекции и отбору удается значительно повысить содержание витаминов в плодах. Убедительным примером этого служат работы И. В. Мичурина. Им создан сорт актинидии Ананасная Мичурина с содержанием витамина C — 124 мг/кг и Клара Цеткин — 168 мг/кг. В плодах исходных сортов дикорастущих актинидий содержалось всего от 4,8 до 83,7 мг/кг витамина.
В настоящее время получены «новые сорта шиповника с концентрацией витамина C в плодах 30 тыс. мг/кг, сорта черной смородины, моркови, тыквы и другие, богатые тем или иным витамином. Например, новый сорт тыквы Витаминная содержит 160—380 мг/кг каротина, тогда как обычные сорта — не более 6 мг/кг. В настоящее время ведется работа по выведению таких сортов, которые сочетали бы в себе высокое содержание не одного, а нескольких витаминов.
Содержание витаминов в тех или иных органах растений зависит не только от интенсивности биосинтеза и использования витаминов, но и от передвижения их из других частей растения. Это можно показать таким простым опытом. Корни томатов у самой корневой шейки окольцовывают, т. е. кольцом срезают наружный коровой слой, по которому передвигаются пластические вещества. Очень быстро обнаруживается, что содержание витамина B1 в стебле непосредственно над местом кольцевания возрастает, а в корневой системе падает. Если произвести кольцевание вблизи растущей верхушки, то можно убедиться, что передвижение этого витамина происходит не только вниз к корням, но и вверх. В значительных количествах витамины B1, B6, биотин и другие содержатся и в пасоке, которая поднимается из корней в надземные части. Эти витамины образуются и в самих корнях и поступают в них из почвы. При подкормке кукурузы витаминами содержание витамина B1 в пасоке увеличилось более чем в 17 раз и витамина B6 более чем в 13 раз по сравнению с контролем. Весной, когда древесные растения выходят из периода покоя и еще отсутствуют листья, а корневая система обладает слабой синтетической деятельностью, в пасоке, поднимающейся к надземным частям, содержатся витамины, мобилизованные главным образом из прежних запасов. Передвижение этих витаминов из запасных органов, конечно, очень важно для энергичного новообразования листьев и цветения.
При помощи изотопного метода нам удалось показать, что витамин B1 будучи введен в черешок среднего листа, быстра передвигается как в верхние и нижние листья, так и в плоды и корни. Подобно витамину B1 передвигаются и другие витамины.
Передвижение витаминов в растении имеет огромное биологическое значение, так как не все части растения в состоянии сами обеспечить себя этими жизненно необходимыми соединениями. Так, например, у проростков гороха корни в достаточном количестве синтезируют биотин и мало — тиамин (витамин B1); эпикотиль, т. е. начинающий расти стебель, образует мало-витаминов. Значит, корни проростка нуждаются в дополнительном обеспечении тиамином, а эпикотилю необходимы и тиамин и биотин. Известно также, что корни многих растений, будучи не в состоянии образовать витамины B1, PP, B6 и др., не смогли бы расти, если бы эти витамины не доставлялись в корневую систему из листьев.