Возможные КПД фотосинтеза посевов

Если верхние листья будут располагаться преимущественно вертикально, то прямые солнечные лучи будут скользить по ним, следовательно, освещенность их будет несколько сниженной и соответствовать тем величинам, при которых КПД фотосинтеза достаточно высок. Вместе с тем такие листья будут достаточно хорошо пропускать свет внутрь посева, «оставляя» его для листьев средних и нижних ярусов, но уже в несколько ослабленном виде. Выгодно, чтобы постепенно листья средних и нижних ярусов имели все больший и больший угол наклона вплоть до того, что нижние листья были бы горизонтальными. В таких случаях приходящаяся на единицу площади посева энергия солнечной радиации будет, с одной стороны, достаточно полно поглощаться посевом в целом и в то же время распределяться на большую площадь листьев, т. е. освещать их с несколько сниженной интенсивностью.

При этом каждый квадратный метр листовой поверхности будет работать с несколько сниженной интенсивностью фотосинтеза, но зато с повышенным КПД, а идеальный по структуре посев с достаточно большой площадью листьев сможет проводить наибольшую суммарную фотосинтетическую работу, т. е. лучше всего использовать приходящуюся на него энергию солнечной радиации.

Чтобы подчеркнуть значение посевов и ценозов как целостной фотосинтезирующей системы, при помощи которой можно использовать приходящую энергию солнечной радиации с высоким КПД, приведем такой пример: представим себе, что растения посева образуют один сплошной слой горизонтальных, примыкающих друг к другу листьев (монослой). Площадь их в сумме будет составлять 10 000 м2/га.

Оценим свойства посева с таким воображаемым «монослоем» и свойства реального, хорошо обеспеченного влагой и минеральным питанием посева с общей площадью листьев в 50 тыс. м2/га.

Оба посева поглотят около 85% приходящей на них энергии фотосинтетической активной радиации. В этом отношении они будут практически равноценными. Но в реальном посеве эта энергия будет поглощена площадью листьев в 5 раз большей, чем в воображаемом посеве с «монослоем» листьев. В последнем случае зависимость фотосинтеза посева от интенсивности света практически будет соответствовать световой кривой фотосинтеза отдельного листа. Поэтому для посева с «монослоем» листьев в течение большей части дня свет будет избыточным. Интенсивность фотосинтеза такого посева в дневные, часы будет значительно отставать от хода интенсивности света. В сумме такой посев будет использовать поглощаемую энергию света с относительно низким КПД.

Что касается реального посева, то в нем то же количество поглощенной энергии будет распределяться на большую площадь листьев. При этом каждый квадратный метр листьев будет освещаться в среднем с меньшей интенсивностью, чем листья «монослоя». Поэтому для посева в целом даже полуденный прямой солнечный свет не будет столь сильно избыточным, как для посева с «монослоем», и реальный посев будет, отзываться положительно даже на свет самых высоких интенсивностей. В этом случае световая кривая реального посева как единого целого будет гораздо более благоприятна, чем световая кривая отдельного листа или «монослоя». Это подтверждает, что в течение дня фотосинтез реального посева в целом (конечно, при хорошей его обеспеченности и структуре) может достаточно хорошо следовать за ходом интенсивностей радиации, все время используя ее с более высоким КПД, чем это мог бы делать воображаемый модельный посев с «монослоем» листьев.

Дневной ход радиации и фотосинтеза посевов

Дневной ход радиации (1) и фотосинтеза (2) посевов: с «монослоем» листьев (А) и нормального (Б), а также соответствующие им кривые фотосинтеза

Стремясь к повышению коэффициента использования энергии солнечной радиации в процессе фотосинтеза посевов, мы должны стремиться к решению двух основных задач:

  1. Всемерно улучшать интенсивность фотосинтеза отдельных листьев растений. (На графиках такой процесс выразится в повышении крутизны подъема световых кривых и уровня плато светового их насыщения).
  2. Создавать такие посевы, которые использовали бы с высоким КПД свет как низкой, так и высокой интенсивности, то есть обладали бы в целом световыми кривыми фотосинтеза, наиболее круто поднимающимися и имеющими высокий уровень плато.

Полноценный сомкнувшийся посев с хорошими световыми кривыми может использовать на фотосинтез поглощаемую за день энергию радиации с КПД, доходящим до 15%, а приходящую (имеется в виду поглощение ее в количестве 85%) — около 12—13%. Это хороший КПД использования энергии солнечной радиации.

Здесь описана возможная эффективность фотосинтетической работы посева в наилучшем состоянии, т. е. в таком, когда он обладает большой площадью листьев и хорошей структурой. На самом деле в таком состоянии даже самые хорошие посевы бывают только часть Бремени из общего периода произрастания. Значительная же часть времени уходит на появление всходов, на первые этапы их развития. В это время травостои еще не смыкаются и значительная часть энергии солнечной радиации падает на почву, безвозвратно теряясь для фотосинтеза.

После периода оптимального состояния начинается период созревания растений. Листья теряют фотосинтетическую активность. Формирование хозяйственной части урожая идет не столько за счет фотосинтеза, сколько за счет перемещения ранее накопленных пластических веществ из листьев, стеблей в репродуктивные и запасающие органы: в зерно, клубни, корнеплоды и т. д.

В конце концов, в сумме посев за время своего развития использует энергию солнечной радиации на фотосинтез с КПД более низкими, чем указано выше. При этом в разных случаях и в разных посевах показатели суммарного итогового КПД могут изменяться очень сильно. Со всем этим приходится считаться. Но даже при всех трудностях есть немало способов направлять ход формирования посевов по наилучшим путям и добиваться высоких КПД использования ими энергии на фотосинтез.

Для успешного достижения желаемых результатов надо иметь полное представление о взаимосвязях и предпосылках, которые лежат в основе формирования фотосинтезирующих систем, способных осуществлять фотосинтез с наиболее высокими КПД.

Об этих предпосылках и принципах можно наиболее доступно рассказать на примере действия фотосинтезирующих систем в виде суспензий одноклеточных водорослей.